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1.  Learning Outcomes 

After studying this module, you shall be able to 

 Appreciate the need to go beyond micro-canonical ensemble in practical situations 

encountered in real physical problems 

 See that in canonical ensemble we relax the energy constraint imposed in micro-

canonical ensemble to exchange energy with the surroundings called heat bath at constant 

temperature  

 Derive the probability of finding a system with energy 𝑬𝒓  in two alternative ways: (i) 

system +heat reservoir system (ii) method of most probable state using Lagrange’s 

undetermined multipliers 

 Understand  the key concept of a partition function, which implies partitioning of the 

members of the ensemble into a set of systems in different energy levels.  

 Know interesting properties of the partition function as a function of macroscopic 

variables and link these to thermodynamic properties of the system. 

 Know the concept of density of states and partition function in phase space 

 To apply the approach of canonical ensemble via partition function to look at following  

physical systems to appreciate its effectiveness: 

o A two level system  

o Classical ideal gas. 

o Maxwellian distribution of speeds 

2.  Introduction 

 In the XII module we studied the micro canonical ensemble, which was a highly 

constrained way of looking at macroscopic systems, practically not possible to achieve 

because nothing can be completely isolated as envisaged in it. To have a more practical 

approach, instead of energy which is not only difficult to keep fixed, temperature is a 

better thermo-dynamical variable which can be controlled and measured easily. For this 

the macroscopic system can be put in a heat bath of with infinitely large heat capacity and 

allowed exchange of energy to keep temperature constant. Such a macroscopic system is 

described by the parameters 𝑵, 𝑽 and 𝑻 and the corresponding ensemble is called 

canonical ensemble. In this ensemble the energy of the system is allowed to vary between 

zero to infinity.  

We are interested in asking the question, what is the probability ℘𝒓 that the macroscopic 

system in the ensemble is in one of the states described by energy 𝑬𝒓 at any given instant 

of time. The concern in this module is to answer this question and learn how this 

approach can be applied to some prototype models. 

3. Canonical Distribution Function: System and Heat Bath Approach 

To answer the question raised in the introduction,we  begin by following an approach 

called system and heat bath approach. We take our system (designated 𝑨) and put it in a 

heat bath (designated 𝑨′) such that system and the heat bath (designated 𝑨𝑻=𝑨 + 𝑨′), 
Figure 1, are allowed to exchange energy,keeping system and heat bath in equilibrium at 
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a  common temperature T.Heat bath is very large having a large heat capacity. The 

composite system (𝑨𝑻) together is completely isolated, such that if at any time if system 

𝑨 has energy 𝑬𝒓 and heat bath 𝑨′ having energy 𝑬𝒓′ then the total energy 𝑬𝑻 is constant 

i.e. 

 𝑬𝒓 + 𝑬𝒓
′ = 𝑬𝑻 = 𝐂𝐨𝐧𝐬𝐭𝐚𝐧𝐭 (1) 

 

 

 

 

 

 

 

Since heat bath is very large, 𝑬𝒓 ≪ 𝑬𝑻 i.e.  

 𝑬𝒓

𝑬𝑻
=  𝟏 −

𝑬𝒓
′

𝑬𝑻
 ≪ 𝟏 

(2) 

Since the heat bath is very large the number of states compatible to it with energy 𝑬𝒓
′ , 

𝛀′(𝑬𝒓
′ ), is very large independent of the nature of the reservoir.It is worth noting that 

larger the number of states available to the reservoir larger is the probability of it 

assuming energy 𝑬𝒓′ and consequently the system immersed in heat bath assuming  

energy𝑬𝒓. As per the principle of equal apriori probability, different microstates in the 

reservoir are equally likely to occur, the probability of system 𝑨occurring with energy 

𝑬𝒓𝑷𝒓is proportional to the number of microstates which the reservoir has i.e. 𝛀′(𝑬𝒓
′ ). 

Therefore, 

 𝑷𝒓 ∝ 𝛀′(𝐄𝐫
′ ) ≡ 𝛀′(𝑬𝑻 − 𝑬𝒓) (3) 

Noting the inequality (2) we can expand the right hand side around 𝑬𝒓
′ = 𝑬𝑻, which 

means around 𝑬𝒓 = 𝟎. Recalling that 𝛀′ is a very large number which varies very 

rapidly, it is therefore, more convenient to deal with logarithm of this function which is a 

slowly varying function. So  

 
𝐥𝐧𝛀′ 𝐄𝐫

′  = 𝐥𝐧𝛀′ 𝑬𝑻 +  
𝝏 𝐥𝐧𝛀′

𝛛𝐄′
 
𝑬𝒓
′ =𝑬𝑻

 𝐄𝐫
′ − 𝑬𝑻 + ⋯ 

(4) 

𝐴′ , 𝐸𝑟
′ , 𝑇  

𝐴, 𝐸𝑟 , 𝑇  

Figure 1Heat bath A’ at equilibrium with system A at temperature T 
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Or 

 
𝐥𝐧𝛀′ 𝐄𝐫

′  ≈ 𝐥𝐧𝛀′ 𝑬𝑻 +  
𝝏 𝐥𝐧𝛀′

𝛛𝐄′
 

𝑬𝒓
′ =𝑬𝑻

(−𝑬𝒓) + ⋯ 

 

(5) 

Recalling  
𝝏 𝐥𝐧𝛀′

𝛛𝐄′
 = 𝜷′ =

𝟏

𝒌𝑩𝑻′
and at equilibrium 𝜷′ =

𝟏

𝒌𝑩𝑻′
= 𝜷 =

𝟏

𝒌𝑩𝑻
, equation (5) can 

be written as  

 𝐥𝐧𝛀′ 𝐄𝐫
′  ≈ 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 −  𝜷𝑬𝒓 

 

(6) 

From (3) and (6) we get  

 𝑷𝒓 ∝ 𝐞−𝜷𝑬𝒓 (7) 

Since sum of all probabilities must sum to 1, normalising, (7) we get 

 
𝑷𝒓 =

𝐞−𝜷𝑬𝒓

 𝐞−𝜷𝑬𝒓
𝒓

 

 

(8) 

Where, summation is over all the states which system 𝑨 can take.  Equation (8) is the 

canonical distribution function which provides the probability of the system in state with 

energy 𝑬𝒓.  

Furthermore, since equation (8) has been derived by using  very fundamental ideas of 

physics involving conservation of energy, extensiveness of energy 𝑬𝑻 = 𝑬𝒓 + 𝑬𝒓
′  , and 

slow and smooth variation of 𝐥𝐧𝛀(𝑬) , independent of the choice of  quantum mechanics 

or classical mechanics it is applicable very generally as we shall see later in applications. 

4. Canonical Distribution Function: Most Probable Value Approach 

We consider an ensemble of ℕ identical systems which are allowed to share energy ℇ. Let 

𝑬𝒓(𝒓 = 𝟎, 𝟏, 𝟐, 𝟑…… . . )denote the energy eigen values of the systems. If 𝒏𝒓denotes the 

number of systems which at any instant have the energy value 𝑬𝒓, then 𝒏𝒓 and 𝑬𝒓   

together satisfy the following two conditions: 
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  𝒏𝒓 = ℕ

𝒓

 
(9) 

  𝒏𝒓𝑬𝒓

𝒓

=  ℇ 
(10) 

 Any set of values  𝒏𝒓 which satisfy conditions sated in equations (9) and (10) is a 

possible way of distributing total energy ℇ among ℕ members of the ensemble. There are 

a number of ways of distributing this total energy  ℇ among the members of the ensemble 

giving different distinct states. These different ways can be counted denoted by the 

symbol Ѡ{𝒏𝒓} given by 

 
Ѡ 𝒏𝒓 =

ℕ!

𝒏𝟎! 𝒏𝟏! 𝒏𝟐! …………
 

(11) 

 

According to principle of equal apriori probability, all possible distribution of energy 

among members of the ensemble are equally likely, the frequency of achieving a given 

set {𝒏𝒓} is directly proportional to the number Ѡ 𝒏𝒓 . Out of all these sets the most 

probable set shall be the one for which Ѡ 𝒏𝒓  is maximum. Once we have identified this 

set say {𝒏𝒓
∗}, we shall be physically interested in this distribution. However statistically 

we can not ignore other {𝒏𝒓}′𝒔 with their corresponding weights or frequencies to 

calculate the expectation values or mean values of the numbers 𝒏𝒓 as given below 

 
 𝒏𝒓 =

 𝒏𝒓Ѡ 𝒏𝒓 
′
{𝒏𝒓}

  Ѡ 𝒏𝒓 
′
{𝒏𝒓}

 
(12) 

Significance of  𝒏𝒓
∗  lies in the fact that the fraction

𝒏𝒓
∗

ℕ
  is the canonical probability𝑷𝒓 

Let us now calculate the desirable numbers {𝒏𝒓
∗} and  𝒏𝒓  .  Again for the reasons stated 

earlier 𝐥𝐧Ѡ is a slowly varying function and we shall use it to proceed further, which 

implies 

 𝐥𝐧Ѡ = 𝐥𝐧ℕ! −  𝐥𝐧𝒏𝒓!

𝒓

 
(13) 

In thermodynamic limit apply Stirlings formula and equation (13) becomes 

 𝐥𝐧Ѡ = ℕ 𝐥𝐧ℕ − 𝑵 −  𝒏𝒓 𝐥𝐧 𝒏𝒓

𝒓

+  𝒏𝒓

𝒓

= ℕ 𝐥𝐧ℕ −  𝒏𝒓 𝐥𝐧 𝒏𝒓

𝒓

 

(14) 
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If 𝒏𝒓 changes by a small amount 𝐥𝐧Ѡ changes by a small amount as given below 

 𝜹 𝐥𝐧Ѡ =  (𝐥𝐧𝒏𝒓 + 𝟏)𝜹𝒏𝒓

𝒓

 
(15) 

Now for 𝒏𝒓is to be maximum 𝜹 𝐥𝐧Ѡ  should become zero, provided equations (9) and 

(10) also satisfy the following conditions simultaneously 

  𝜹𝒏𝒓

𝒓

= 𝟎 
(16) 

 

  𝑬𝒓 𝜹𝒏𝒓

𝒓

= 𝟎 
(17) 

Now to get the set {𝒏𝒓
∗}, method of Lagrange’s undetermined multiplier can be used 

according to which equations (15), (16) and (17) together yield the condition 

 

   (−(𝐥𝐧𝒏𝒓 + 𝟏) − 𝜶 − 𝜷𝑬𝒓

𝒓

) 𝜹𝒏𝒓 = 𝟎 
(18) 

Where 𝜶 and𝜷 are Lagrange’s undetermined multipliers. Since 𝜹𝒏𝒓 is completely 

arbitrary, for equation (18) to be satisfied its  coefficients must become zero, i.e. for all r 

 (− (𝐥𝐧𝒏𝒓
∗ + 𝟏) − 𝜶 − 𝜷𝑬𝒓 = 𝟎 (19) 

 

Or  

 𝐥𝐧 𝒏𝒓
∗ = −𝟏 − 𝜶 − 𝜷𝑬𝒓 (20) 

Or  

 𝒏𝒓
∗ = 𝒆−(𝟏+𝜶)𝒆−𝜷𝑬𝒓 = 𝑪 𝒆−𝜷𝑬𝒓 (21) 

 

Where now 𝑪 and 𝜷 are two undetermined parameters and (21) gives us  the most 

probable distribution. To calculate 𝑪, we note  
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  𝒏𝒓
∗

𝒓

=  ℕ = 𝑪 𝒆−𝜷𝑬𝒓

𝒓

 
(22) 

Or  

 
𝑪 =

ℕ

 𝒆−𝜷𝑬𝒓
𝒓

 

 

(23) 

Therefore,  

 
𝑷𝒓 =

𝒏𝒓
∗

ℕ
=  

𝒆−𝜷𝑬𝒓

 𝒆−𝜷𝑬𝒓
𝒓

 
(24) 

 

Now the other Lagrange’s parameter 𝜷 can be obtained from a solution of the equation 

 
 𝑬 =  

 𝑬𝒓 𝒓
𝒆−𝜷𝑬𝒓

 𝒆−𝜷𝑬𝒓
𝒓

= − 
𝝏

𝝏𝜷
𝐥𝐧 𝒆−𝜷𝑬𝒓

𝒓

 

 

(25) 

According to statistical mechanics  𝑬  is thermodynamic energy 𝑬. 

Furthermore, = −
𝝏𝑬𝒓

𝝏𝑽
 , therefore, 

 

 𝑷 = −
  

𝝏𝑬𝒓

𝝏𝑽
 𝒆−𝜷𝑬𝒓

𝒓

 𝒆−𝜷𝑬𝒓
𝒓

 

(26) 

Here  𝑷  corresponds to thermodynamic pressure. 

Let us differentiate equation (25) with respect to 𝑽, remembering that 𝑬𝒓 is a function of 

𝑵, 𝑽 and 𝜷, keeping 𝑵 and 𝜷 fixed, we have 

 
 
𝝏 𝑬 

𝝏𝑽
 
𝑵,𝜷

= − 𝑷 + 𝜷 𝑬𝑷 − 𝜷 𝑬  𝑷  
(27) 

Now we can differentiate equation (26) with respect to 𝜷, we have 

 
 
𝝏 𝑬 

𝝏𝜷
 
𝑵,𝑽

=  𝑬  𝑷 −  𝑬𝑷  
(28) 
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Multiplying (28) on both sides by 𝜷 and adding to equation (27), we get 

 
 
𝝏 𝑬 

𝝏𝑽
 
𝑵,𝜷

+ 𝜷 
𝝏 𝑷 

𝝏𝜷
 
𝑵,𝑽

= − 𝑷  
(29) 

Let us compare equation (29) with the well known thermodynamic relation 

 

 
𝝏𝑬

𝝏𝑽
 
𝑻,𝑵

− 𝑻 
𝝏𝑷

𝝏𝑻
 
𝑵,𝑽

=  
𝝏𝑬

𝝏𝑽
 
𝑻,𝑵

+  
𝟏

𝑻
  

𝝏𝑷

𝝏(
𝟏

𝑻
)
 

𝑵,𝑽

 = −𝑷 

(30) 

One can easily conclude that 𝜷 =
𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

𝑻
=

𝟏

𝒌𝑩𝑻
, where 𝒌𝑩 is well known Boltzmann 

constant. 

 

5. Idea of Partition function 

Equations (8) and (24) given above  represent the canonical distribution function 

𝑷𝒓 =   
𝒆−𝜷𝑬𝒓

 𝒆−𝜷𝑬𝒓
𝒓

 

It has a very interesting feature worth mentioning which is clear from the graph of 

𝑷𝒓versus 𝑬𝒓 shown in figurec 2 below. 

 

Figure 2 Canonical probability distributionof a state 𝑬𝒓 

𝑬𝒓 

𝑃𝑟  
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As the energy of the state 𝑬𝒓 increases its probability decreases exponentially compared 

to low energy states, clearly showing that probability distribution is not uniform unlike in 

micro canonical case where it is uniform with all states having equal probability. 

The denominator, conventionally represented by 𝒁, 𝒁 =  𝐞−𝜷𝑬𝒓
𝒓  is called the 

canonical partition function or canonical sum over the states. It is obviously a function of 

𝑻and via 𝑬𝒓 a function of 𝑵and 𝑽, i.e 𝒁(𝑵, 𝑽, 𝑻). The partition function can be a function 

of any other parameter on which 𝑬𝒓 depends. Knowledge of partition function is  the 

most important result of the statistical  mechanics, since once it is known than all 

equilibrium physical properties of the macroscopic system under consideration can be 

known from it. Richard Feynmann in his book on statistical mechanics described 

partition function as the summit of statistical mechanics. He expressed it  in following 

words:  

Entire subject is either the slide down from the summit, as the principle is applied 

to various cases, or climb up to where the fundamental law is derived and the 

concept of thermal equilibrium and temperature 𝑻 are clarified. 

 

6. Partition function and Thermodynamics 

In the following we discuss the  

6.1 Average Energy of the thermodynamic system 

Let us look at the equation (25) which represents average energy written in canonical 

ensemble. It can be written in terms of partition function as 

 
 𝑬  = −

𝝏

𝝏𝜷
𝐥𝐧 𝒆−𝜷𝑬𝒓

𝒓

= −
𝝏

𝝏𝜷
𝐥𝐧  𝒁 = −

𝟏

𝒁

𝝏𝒁

𝝏𝜷
 

(31) 

This further provides us a way to calculate the specific heat in terms of Z. 

6.2 Average Pressure and Average of Other Generalised Forces 

We know in general that a thermodynamic system under consideration has number of 

external parameters symbolic written as 𝑿𝟏, 𝑿𝟐, 𝑿𝟑 ……………𝑿𝒌. If such an external 

parameter is changed by an infinitesimal amount from 𝑿𝒊 → 𝑿𝒊 + 𝒅𝑿𝒊, this causes a 

change in its energy as 

 
𝒅𝑬 =  

𝝏𝑬

𝝏𝑿𝒊
 𝒅𝑿𝒊

𝒊

 
(32) 
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Here 𝒅E is the amount of work done by the generalized force  𝑭𝒊 =
𝝏𝑬

𝝏𝑿𝒊
 . Now if we recall 

𝑽 as an external parameter the generalized force corresponding to that is pressure 

𝑷 = −
𝝏𝑬

𝝏𝑽
. The average of pressure can be written as  

 

 𝑷 =   
 

𝝏𝑬𝒓

𝝏𝑽
𝒆−𝜷𝑬𝒓

𝒓

 𝒆−𝜷𝑬𝒓
𝒓

 =
𝟏

𝜷

𝝏 𝐥𝐧𝒁

𝝏𝑽
 

(33) 

Thus average of the generalized force 𝑭 for the external parameter 𝑿 can be written as 

 

 𝑭 =   
 

𝝏𝑬𝒓

𝝏𝑿
𝒆−𝜷𝑬𝒓

𝒓

 𝒆−𝜷𝑬𝒓
𝒓

 =
𝟏

𝜷

𝝏 𝐥𝐧𝒁

𝝏𝑿
 

(34) 

6.3Entropy 

Partition function of 𝒁 is a function of  𝑽, 𝑻  i.e. 𝒁 = 𝒁(𝑽, 𝑻)  or of (𝑽, 𝜷)i.e. 𝒁 =
𝒁(𝑽, 𝜷). Thus  

 
𝒅(𝐥𝐧𝒁) =

𝝏 𝐥𝐧𝒁

𝝏𝜷
𝒅𝜷 +

𝝏 𝐥𝐧𝒁

𝝏𝑽
𝒅𝑽 

(35) 

Using equation (31) and (33), we have 

 𝒅(𝐥𝐧𝒁) = − 𝑬𝒅𝜷 + 𝜷𝑷𝒅𝑽 + 𝜷𝒅𝑬 − 𝜷𝒅𝑬 (36) 

Or 

 𝒅(𝐥𝐧𝒁) = −  𝒅(𝑬𝜷) + 𝜷𝑷𝒅𝑽 + 𝜷𝒅𝑬  (37) 

Or  

 
𝒅(𝐥𝐧𝒁 + 𝑬𝜷) =  𝜷𝑷𝒅𝑽 + 𝜷𝒅𝑬 =

𝟏

𝒌𝑩
 
𝑷

𝑻
𝒅𝑽 +

𝟏

𝑻
𝒅𝑬  

(38) 

Since
𝑷

𝑻
𝒅𝑽 +

𝟏

𝑻
𝒅𝑬 = 𝒅𝑺, we have  

 𝑺 = 𝐤𝐁(𝐥𝐧𝒁 + 𝑬𝜷) (39) 

 

6.4Helmholtz Free Energy (F) 
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We know Helmholtz free energy is given by 𝑭 = 𝑬 − 𝑻𝑺, using equation (39) we 

have 

 𝑭 = 𝑬 − 𝑻(𝐤𝐁(𝐥𝐧𝒁 + 𝑬𝜷)) = −𝒌𝑩𝑻 𝐥𝐧𝒁 (40) 

 

7.Degenerate Energy Levels, Probability Distribution  and Partition 

Function 

In actual physical systems there is high degree of degeneracy with a set of states, 𝒈𝒓 

in number called degeneracy,  having same energy 𝑬𝒓. It is expected that  these𝒈𝒓 states 

are equally likely to occur and probability is scaled up by the degeneracy 𝒈𝒓 of the state 

𝑬𝒓. In such a case equation (8) for probability of the system to be in the state 𝑬𝒓 becomes  

 
𝑷𝒓 =

𝐠𝐫 𝐞−𝜷𝑬𝒓

 𝐠𝐫 𝐞−𝜷𝑬𝒓
𝒓

 
(41) 

Furthermore, in a macroscopic system the energy levels 𝑬𝒊of the system are bunched 

together very closely. One finds that in such a case, in a small interval 𝒅𝑬 of energy  

around𝑬, a very large number of energy levels lie, forming almost a continuum. 

Therefore, 𝑬 can be treated as a continuous variable and define 𝑷 𝑬 𝒅𝑬 as the 

probability that the system of the canonical ensemble has the energyin the interval 𝒅𝑬 

around 𝑬which is proportional to single state probability  𝐞−𝜷𝑬 multiplied by number of 

energy states 𝒈 𝑬 𝒅𝑬 lying in the interval 𝒅𝑬, where 𝒈 𝑬  is called density of states. 

Thus  

 𝑷 𝑬 𝒅𝑬 ∝ 𝒆−𝜷𝑬 𝒈 𝑬 𝒅𝑬 (42) 

On normalization this becomes 

 
𝑷 𝑬 𝒅𝑬 =

𝒆−𝜷𝑬 𝒈 𝑬 𝒅𝑬

 𝒆−𝜷𝑬 𝒈 𝑬 𝒅𝑬
∞

𝟎

 
(43) 

 

The partition function in this case becomes 

 

𝒁 𝜷 =  𝒆−𝜷𝑬 𝒈 𝑬 𝒅𝑬

∞

𝟎

 

(44) 

It is worth noting here that 𝒁 𝜷  is the laplace transform of density of state 𝒈 𝑬  and the 

laplace transform can be inverted to give the density of states 
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𝒈 𝑬 =
𝟏

𝟐𝝅𝒊
 𝒁 𝜷 𝒆𝜷𝑬  𝒅𝜷

𝜷′ +𝒊∞

𝜷′−𝒊∞

  (𝜷′ > 0) 

(45) 

 

The expression for the average value of a physical quantity 𝒇 can be written as  

 
 𝒇 =

 𝒇(𝑬) 𝒆−𝜷𝑬 𝒈 𝑬 𝒅𝑬
∞

𝟎

 𝒆−𝜷𝑬 𝒈 𝑬 𝒅𝑬
∞

𝟎

 
(46) 

 

 

8.  Partition Functionin Phase Space 

 

For the sake of completeness, it is worth mentioning here that the formalism 

developed above can be applied to both classical as well as quantum mechanical systems. 

In the case of classical system this formalism can be expressedin the language of phase 

space. Let us recall the definition of ensemble average encountered in module XII: 

 
 𝒇 =

 𝝆 𝒒, 𝒑 𝒇 𝒑, 𝒒 𝒅𝟑𝑵𝒒 𝒅𝟑𝑵𝐩 

 𝝆 𝒒, 𝒑 𝒅𝟑𝑵𝒒 𝒅𝟑𝑵𝐩 
 

(47) 

Here 𝝆 𝒒, 𝒑  is the phase space density telling us the probability of finding a 

representative point near  𝒒, 𝒑  which ultimately depends on   the Hamiltonian 𝑯 𝒒, 𝒑 of 

the system. In canonical ensemble, therefore,  

 𝝆 𝒑, 𝒒 ∝ 𝒆−𝜷𝑯(𝒒,𝒑) (48) 

Thus (47) becomes 

 
 𝒇 =

 𝒆−𝜷𝑯(𝒒,𝒑)𝒇 𝒑, 𝒒 𝒅𝟑𝑵𝒒 𝒅𝟑𝑵𝐩 

 𝒆−𝜷𝑯(𝒒,𝒑)𝒅𝟑𝑵𝒒 𝒅𝟑𝑵𝐩 
 

(49) 

 

Once again we note that the denominator is related to the partition function provided 

phase space volume is suitably modified by replacing the factor 𝒅𝟑𝑵𝒒 𝒅𝟑𝑵𝐩 →

 
(𝒅𝟑𝑵𝒒 𝒅𝟑𝑵𝐩)

𝐍!𝐡𝟑𝐍
, enumerating the distinct number of quantum states. 
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Therefore, partition function for classical systems is 

 
𝒁𝑵 𝑽, 𝑻 =

𝟏

𝑵! 𝒉𝟑𝑵
 𝒆−𝜷𝑯(𝒒,𝒑)𝒅𝟑𝑵𝒒 𝒅𝟑𝑵𝐩  

(50) 

With integration extending over the whole phase space. 

 

 

9.  Factorability of Partition Function 

 Before we go over to apply the results derived above to physical systems, let us note 

another significant property of the partition function called factorability in the case of non 

interacting systems with no quantum correlations. 

Let us take a system of N independent, non interacting entities (e.g. atoms/molecules 

in an ideal gas, small vibrational modes in a solid such as phonons etc.) such that 

Hamiltonian of such a system can be written as  

 𝑯 =  𝑯𝒊

𝒊

 
(51) 

Where 𝑯𝒊 is the Hamiltonian for a single entity of the system. So the partition 

function of the system as given in equation (50) becomes 

 

𝒁𝑵 𝑽, 𝑻 =
𝟏

𝒉𝟑𝑵𝑵!
 𝒆−𝜷 𝑯𝒊(𝒒𝒊,𝒑𝒊)𝒊  𝒅𝟑𝒒𝒊𝒅

𝟑𝐩𝐢

𝑵

𝑰=𝟏

 

(52) 

 Or 

 
𝒁𝑵 𝑽, 𝑻 =

𝟏

𝑵!
 
𝟏

𝒉𝟑
 𝒆−𝜷𝑯𝒊 𝒒𝒊,𝒑𝒊 𝒅𝟑𝒒𝒊𝒅

𝟑𝐩𝐢 
𝑵

=
𝟏

𝑵!
 𝒁𝟏(𝑽, 𝑻) 𝑵 

(53) 

Where 

 
𝒁𝟏 𝑽, 𝑻 =

𝟏

𝒉𝟑
 𝒆−𝜷𝑯𝒊 𝒒𝒊,𝒑𝒊 𝒅𝟑𝒒𝒊𝒅

𝟑𝐩𝐢 
(54) 

Result (53) represents the factorability of the partition function for noninteracting 

entities in a system. This conclusion remains valid for non-interacting entities even when 

the entities have internal degrees of motion.  
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10. Applications 

Now we will look at some prototype applications of canonical ensemble and simplicity 

with results can be obtained.   

10.1 A  Two Level System 

Let us begin with a simple two level system, i.e. a system which has only two states 

accessible, consisting of Nidentical non-interacting particles, Figure 1. The lower 

level is the ground state of the system with zero energy and the other level is the first 

excited state of the system with energy 𝝐. Both the states are non-degenerate. The 

higher energy states are not available to  the system, because they exceed the total 

energy available to the system.  

 

 

 

The single particle partition function can be written as 

 𝒁𝟏 = (𝟏 + 𝒆−𝝐) (55) 

So that total partition function can be written as  

 𝒁 =  𝟏 + 𝒆−𝜷𝝐 
𝑵

 (56) 

 

Using the relation of thermodynamic quantities, we can get Helmholtz free energy as 

 
𝑭 = −

𝟏

𝜷
𝐥𝐧𝒁 = −

𝑵

𝜷
𝐥𝐧 𝟏 + 𝒆−𝜷𝝐 = −𝑵𝒌𝑩𝑻 𝐥𝐧 𝟏 + 𝒆−𝝐/𝒌𝑩𝑻  

(57) 

Internal energy 𝑬 is given as  

 

 

0 

𝜖 

Figure 3A two non-degenerate level system 
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𝑬 = −

𝟏

𝒁

𝝏𝒁

𝝏𝜷
 =  

𝑵𝝐

 𝟏 + 𝒆𝜷𝝐 
 

(58) 

 

Entropy  can be obtained as follows  

 

𝑺 = 𝐤𝐁(𝐥𝐧 𝒁 + 𝑬𝜷) = 𝑵𝒌𝑩  𝐥𝐧  𝟏 + 𝒆
−

𝝐

𝒌𝑩𝑻 +

𝝐

𝒌𝑩𝑻

 𝟏 + 𝒆
𝝐

𝒌𝑩𝑻 
  

(59) 

 

 

10.2 Classical Ideal Gas 

In module VIII we discussed at length classical ideal gas from statistical 

mechanics route. Here we shall revisit this from the point of view of canonical  

ensemble. A classical ideal gas is a system of 𝑵 identical monoatomic molecules, 

confined in a volume 𝑽 at temperature 𝑻 with no interaction among the molecules. 

Hamiltonian of such a system is merely a sum of kinetic energies of each molecule, 

which can be written as  

 

𝑯 𝒒, 𝒑 =   
𝒑𝒊

𝟐

𝟐𝒎
 

𝑵

𝒊=𝟏

 

(60) 

Using (53), partition function can be written as 

 

 
𝒁𝑵 𝑽, 𝑻 =

𝟏

𝑵!
 
𝟏

𝒉𝟑
 𝒆−𝜷

𝒑𝟐

𝟐𝒎𝒅𝟑 𝒒 𝒅𝟑𝐩 

𝑵

 
(61) 

 

Or  

 
𝒁𝑵 𝑽, 𝑻 = =  

𝟏

𝑵!
 
𝟏

𝒉𝟑
 𝒅𝟑 𝒒  𝒆−𝜷

𝒑𝟐

𝟐𝒎𝒅𝟑𝐩
∞

𝟎

 

𝑵

 

 

(62) 
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First integral in (62) is over space coordinates giving 𝑽𝑵 giving  

 
𝒁𝑵 𝑽, 𝑻 = =  

𝑽𝑵

𝑵! 𝒉𝟑𝑵
  𝒆−𝜷

𝒑𝟐

𝟐𝒎𝒅𝟑𝐩
∞

𝟎

 

𝑵

 

 

(63) 

Equation (63) can be further simplified by expanding in polar coordinates to give 

 

𝒁𝑵 𝑽, 𝑻 = =  
𝑽𝑵

𝑵! 𝒉𝟑𝑵
  𝒆

− 
𝒑𝟐

𝟐𝒎𝒌𝑩𝑻  𝟒𝛑𝐩𝟐𝒅𝒑
∞

𝟎

 

𝑵

 

 

(64) 

Using the standard integral  𝒆− 𝜶𝒙𝟐
𝒙𝟐𝒅𝒙

∞

𝟎
=

𝟏

𝟒
 

𝝅

𝜶𝟑 

𝟏

𝟐
, we get 

 
𝒁𝑵 𝑽, 𝑻 = =  

𝟏

𝑵! 
 
𝐕

𝐡𝟑
(𝟐𝝅 𝒎 𝒌𝑩𝑻) 

𝟑

𝟐 
𝑵

 

 

(65) 

Now we can get thermodynamic functions using Stirling’s formula. 

Helmholtz free energy is given as  

 

𝑭 = −𝒌𝑩𝑻 𝐥𝐧𝒁 = 𝑵𝒌𝑩𝑻  𝐥𝐧 
𝑵

𝑽
 

𝒉𝟐

𝟐𝝅𝒎 𝒌𝑩𝑻
 

𝟑

𝟐

 − 𝟏  

(66) 

Once we have 𝑭, all other thermodynamic properties can be derived immediately. 

Pressure: 

 
𝑷 = − 

𝝏𝑭

𝝏𝑽
 
𝑵,𝑻

=
𝑵𝒌𝑩𝑻

𝑽
 

(67) 

Equation (67) is the equation of state of an ideal gas. 

Chemical potential: 

 

𝝁 =  
𝝏𝑭

𝝏𝑵
 
𝑽,𝑻

= 𝒌𝑩𝑻 𝐥𝐧 
𝑵

𝑽
 

𝒉𝟐

𝟐𝝅𝒎 𝒌𝑩𝑻
 

𝟑

𝟐

  

(68) 
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Entropy: 

 

𝑺 = − 
𝝏𝑭

𝝏𝑻
 
𝑵,𝑽

= 𝑵𝒌𝑩  𝐥𝐧 
𝑽

𝑵
 

𝒉𝟐

𝟐𝝅𝒎 𝒌𝑩𝑻
 

𝟑

𝟐

 +
𝟓

𝟐
  

(69) 

Internal Energy: 

We know 𝑬 = 𝑭 + 𝑻𝑺, using (66) and (69), we get 

 
𝑬 =

𝟑

𝟐 
𝑵𝒌𝑩𝑻 

(70) 

 

10.3Maxwell Boltzmann Distribution  

One of the very interesting applications of canonical distribution in classical physical 

systems is to obtain the distribution of velocities in a gas of an ideal gas. The aim of 

Maxwell Boltzmann distribution is to find the number of molecules in the phase space 

volume 𝒅𝟑𝒓 𝒅𝟑paround the representative point  𝒓  , 𝒑     as shown in the figure below 

 

 

  

 

 

 

 

 

 

The total energy of the gas, consisting of N molecules in volume 𝑽 is  

 

𝑬 =  
𝒑𝟐

𝟐𝒎

𝑵

𝒊=𝟏

 

(71) 

𝑣𝑥  

𝑣𝑦  

𝑣𝑧  

Figure 4 Infinitesimal volume in velocity space around a 

velocity point 
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The probability that molecule of the gas has velocity lying between 𝒗   and 𝒗   + 𝒅𝒗      , given 

by canonical distribution is 

 
𝑷(𝒓  , 𝒗)     𝒅𝟑𝒓 𝒅𝟑𝒗 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 × 𝒆

−
𝒎𝒗𝟐

𝟐𝒌𝑩𝑻𝒅𝟑𝒓 𝒅𝟑𝒗 
(72) 

 

To get the Maxwell Boltzmann distribution, let 𝒇(𝒓  , 𝒗   )𝒅𝟑𝒓 𝒅𝟑𝒗be the mean number of 

particles in the velocity space volume 𝒅𝟑𝒓 𝒅𝟑𝒗where 𝒇(𝒓  , 𝒗)      is velocity distribution. 

This number is also proportional to 𝑷(𝒓  , 𝒗)     𝒅𝟑𝒓 𝒅𝟑𝒗i.e.  

𝒇 𝒓  , 𝒗    𝒅𝟑𝒓 𝒅𝟑𝒗 =  𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 × 𝒆
−

𝒎𝒗𝟐

𝟐𝒌𝑩𝑻𝒅𝟑𝒓 𝒅𝟑𝒗 

 This number when integrated over whole velocity space volume is equal to the total 

number of particles. 

Thus  

 
𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝒆

−
𝒎𝒗𝟐

𝟐𝒌𝑩𝑻𝒅𝟑𝒓 𝒅𝟑𝒗 = 𝐍 
(73) 

 

Or 

 
𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 =  

𝑵

 𝒅𝟑𝒓  𝒆
−

𝒎𝒗𝟐

𝟐𝒌𝑩𝑻𝒅𝟑𝒗

=
𝑵

𝑽 𝒆
−

𝒎𝒗𝟐

𝟐𝒌𝑩𝑻 𝟒𝝅𝒗𝟐𝒅𝒗

 

 

(74) 

Therefore, 

 
𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 =

𝑵

𝑽
 

𝒎

𝟐𝝅𝒌𝑩𝑻
 

𝟑

𝟐
 

(75) 

 

 
𝒇 𝒓  , 𝒗    =

𝑵

𝑽
 

𝒎

𝟐𝝅𝒌𝑩𝑻
 

𝟑

𝟐
𝒆
−

𝒎𝒗𝟐

𝟐𝒌𝑩𝑻 
(76) 

Here we note that because of isotropic nature of the system, 𝒇 𝒓  , 𝒗     is independent of 

position so that 𝒇 𝒓  , 𝒗    = 𝒇 𝒗    ≡ 𝒇(𝒗). 
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To find the number of molecules in the range 𝒗and 𝒗 + 𝒅𝒗, we multiply 𝒇 𝒗  with the 

volume of the velocity shell in velocity space i.e. 𝟒𝝅𝒗𝟐𝒅𝒗 thus we get 

 
𝟒𝝅𝒗𝟐𝒇(𝒗)𝒅𝒗 = 𝟒𝝅𝒏 

𝒎

𝟐𝝅𝒌𝑩𝑻
 

𝟑

𝟐
𝒗𝟐𝒆

−
𝒎𝒗𝟐

𝟐𝒌𝑩𝑻 𝒅𝒗 
(77) 

 

Equation (77) gives the famous Maxwell Distribution of the speed of molecules, where 

𝒏 =
𝑵

𝑽
. Figure 5 gives this distribution of speeds 

𝟒𝝅𝒗𝟐𝒇 𝒗 

𝒏 
𝒎

𝟐𝝅𝒌𝑩𝑻
 

𝟏
𝟐

 against 
𝟐𝒌𝑩𝑻

𝒎
 

𝟏

𝟐
 𝒗 

 

Figure 5 and Figure 6, show that most of the molecules of an ideal gas have speed around 

a value which is dependent on temperature. The most provable speed can be obtained by 

taking 

 𝒅𝒇 𝒗 

𝒅𝒗
= 𝟎 

(78) 

 

Figure 5 Maxwell Boltzmann distribution for speed of molecules in an ideal gas against v 

4𝜋𝑣2𝑓 𝑣 

𝑛  
𝑚

2𝜋𝑘𝐵𝑇
 

1

2

 

 
2𝑘𝐵𝑇

𝑚
 

1

2

 𝑣 
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This gives 

 

𝒗𝒎𝒂𝒙 =  
𝟐𝒌𝑩𝑻

𝒎
 

(79) 

 

Mean velocity of the gas is zero, since as many molecules move in the direction of 

positive axis as in the direction of negative axis. However we can find out average speed 

𝒗  and root mean square speed 𝒗𝒓𝒎𝒔. 

Average speed(𝒗 ):  

 

 𝑣 =
1

𝑛
 𝑣 𝑓(𝑣)

∞

0

 𝑑𝑣 = 4𝜋  
𝑚

2𝜋𝑘𝐵𝑇
 

3

2
 𝑣3𝑒

−
𝑚𝑣2

2𝑘𝐵𝑇𝑑𝑣
∞

0

 

 

 

Putting
𝒎𝒗𝟐

𝟐𝒌𝑩𝑻
= 𝝃𝟐 such that  𝒗𝒅𝒗 =

𝝃 𝒅𝝃
𝒎 

𝟐𝒌𝑩𝑻

 we have 

 𝒗 = 𝟒𝝅 
𝒎

𝟐𝝅𝒌𝑩𝑻
 

𝟑

𝟐
 
𝟐𝒌𝑩𝑻

𝒎
 
𝟐

 𝝃𝟑𝒆−𝝃𝟐
 𝒅𝝃

∞

𝟎

 

𝑣 

Figure 6 Maxwell distribution of speeds for two different temperatures (𝑻𝟐 = 𝟐𝑻𝟏 ) 

𝑇2 > 𝑇1 𝑇1 

𝑇2 

𝑓(𝑣) 

𝑣 
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The integral appearing above is a standard integral such that  𝝃𝟑𝒆−𝜶𝝃𝟐
 𝒅𝝃

∞

𝟎
=

𝟏

𝟐𝜶𝟐, 

therefore, we have 

 

 𝒗  =   
𝟖

𝝅

𝒌𝑩𝑻

𝒎
 

(80) 

Root mean square  speed(𝒗𝒓𝒎𝒔 ) 

Mean square speed, i.e mean of the square of the velocity can be calculated as  

 

 𝒗𝟐 =
𝟏

𝒏
 𝒗𝟐 𝒇(𝒗)

∞

𝟎

 𝒅𝒗 

(81) 

 

Which can be further written as, 

𝟒𝝅 
𝒎

𝟐𝝅𝒌𝑩𝑻
 

𝟑

𝟐
 
𝟐𝒌𝑩𝑻

𝒎
 

𝟓

𝟐

 𝝃𝟒𝒆−𝝃𝟐
 𝒅𝝃

∞

𝟎

 

The integral appearing above is a standard integral such that  𝝃𝟒𝒆−𝜶𝝃𝟐
 𝒅𝝃

∞

𝟎
=

𝟑

𝟖
 

𝝅

𝜶𝟓 

𝟏

𝟐
, 

therefore, we have 

 
 𝒗𝟐 =

 𝟑𝒌𝑩𝑻

𝒎
 

 

(82) 

Thus, 

 

𝒗𝒓𝒎𝒔 =  
 𝟑𝒌𝑩𝑻

𝒎
 

(83) 

Here are some interesting conclusions. 

 Each  these three velocities are ∝  𝑻, therby implying that these increase as 

temperature 𝑻 increase. 
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 𝒗𝒎𝒂𝒙 > 𝒗 > 𝒗𝒓𝒎𝒔and are in the ratio of   𝟐: 
𝟖

𝝅
:  𝟑 

 

5. Summary 

In this module we have learnt  

 That  canonical ensemble corresponds to  acollection of exact replicas of a 

systemwhere energy can be exchanged with T= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕, 𝑵 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 and 

𝑽 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕. 
 The application of system-heat bath approachand method of most probable 

values via Lagrange’s undetermined multipliers to derive canonical distribution 

function for a system  

𝑷𝒓 =
𝐞−𝜷𝑬𝒓

 𝐞−𝜷𝑬𝒓𝒓
for a system with non-degenerate energy levels 

𝑷𝒓 =
𝒈𝒓𝐞

−𝜷𝑬𝒓

 𝒈𝒓𝐞−𝜷𝑬𝒓𝒓
for a system with  levels 𝑬𝒓of degeneracy 𝒈𝒓each 

 That partition function is the key concept in statistical mechanics, from which all 

the thermodynamic properties can be derived. The canonical partition function 

can be written as 

Type of system Canonical Partition Function 

Quantum mechanical (non-

degenerate) 
𝒁 =  𝐞−𝜷𝑬𝒓

𝒓

 

Quantum mechanical (degenerate) 𝒁 =  𝒈𝒓𝐞
−𝜷𝑬𝒓

𝒓

 

Quantum Mechanical with density of 

states 𝒈(𝑬),  𝒁 𝜷 =  𝒆−𝜷𝑬 𝒈 𝑬 𝒅𝑬

∞

𝟎

 

Classical system in phase space 𝒁𝑵 𝑽, 𝑻 

=
𝟏

𝑵! 𝒉𝟑𝑵
 𝒆−𝜷𝑯(𝒒,𝒑)𝒅𝟑𝑵𝒒 𝒅𝟑𝑵𝐩  

 

 That partition function of a non-interacting system without quantum correlations 

is factorizable 

𝒁𝑵 𝑽, 𝑻 =
𝟏

𝑵!
 
𝟏

𝒉𝟑
 𝒆−𝜷𝑯𝒊 𝒒𝒊,𝒑𝒊 𝒅𝟑𝒒𝒊𝒅

𝟑𝐩𝐢 
𝑵

=
𝟏

𝑵!
 𝒁𝟏(𝑽, 𝑻) 𝑵 
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 How all the thermodynamic properties can be written in terms of partition 

function 

Average energy 𝑬  
= −

𝝏

𝝏𝜷
𝐥𝐧  𝒁 = −

𝟏

𝒁

𝝏𝒁

𝝏𝜷
 

Average pressure 𝑷  
=   

 
𝝏𝑬𝒓

𝝏𝑽
𝒆−𝜷𝑬𝒓

𝒓

 𝒆−𝜷𝑬𝒓
𝒓

 =
𝟏

𝜷

𝝏 𝐥𝐧𝒁

𝝏𝑽
 

Generalised Force  𝑭  
=   

 
𝝏𝑬𝒓

𝝏𝑿
𝒆−𝜷𝑬𝒓

𝒓

 𝒆−𝜷𝑬𝒓
𝒓

 =
𝟏

𝜷

𝝏 𝐥𝐧𝒁

𝝏𝑿
 

Entropy 𝑺 = 𝐤𝐁(𝐥𝐧𝒁 + 𝑬𝜷) 

Helmholtz free energy 𝑭 =  −𝒌𝑩𝑻 𝐥𝐧𝒁 

 How the properties from the knowledge of partition function of the following 

systems their thermodynamic properties can be obtained: 

i. A Two Level System 

Partition function 𝒁 = 𝒁𝟏
𝑵 =    𝟏 + 𝒆−𝜷𝝐 

𝑵
 

Helmholtz free energy 𝑭 = −𝑵𝒌𝑩𝑻 𝐥𝐧 𝟏 + 𝒆−𝝐/𝒌𝑩𝑻  
Internal Energy 

𝑬  =  
𝑵𝝐

 𝟏 + 𝒆𝜷𝝐 
 

ii. Classical Ideal Gas 

Partition function 
𝒁𝑵 𝑽, 𝑻 = =  

𝟏

𝑵! 
 
𝑽

𝐡𝟑
(𝟐𝝅 𝒎 𝒌𝑩𝑻) 

𝟑

𝟐 
𝑵

 

 

Helmholtz free energy 

𝑭 = 𝑵𝒌𝑩𝑻  𝐥𝐧 
𝑵

𝑽
 

𝒉𝟐

𝟐𝝅𝒎 𝒌𝑩𝑻
 

𝟑

𝟐

 − 𝟏  

 How to derive Maxwell_Boltzmanndistribytion of speeds and calculate maximum 

speed, mean speed and root mean square speed 

Maxwell --Boltzmann 

Distribution of speeds 𝒇  𝒗 =
𝑵

𝑽
 

𝒎

𝟐𝝅𝒌𝑩𝑻
 

𝟑

𝟐
𝒆
−

𝒎𝒗𝟐

𝟐𝒌𝑩𝑻 

Maximum speed 

𝒗𝒎𝒂𝒙 =  
𝟐𝒌𝑩𝑻

𝒎
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Mean speed 

 𝒗  =   
𝟖

𝝅

𝒌𝑩𝑻

𝒎
 

Root mean square speed 

𝒗𝒓𝒎𝒔 =  
 𝟑𝒌𝑩𝑻

𝒎
 

 

Appendices 

A1 Lagrange’s Method of Undetermined Multipliers 

In this module we used Lagrange’s method of undetermined multipliers to derive 

canonical distribution. In this appendix a very brief mathematical basis of this method is 

provided. This method addresses the problem of finding extremum of a function  under 

constraining conditions imposed by physical requirements such as particle conservation 

and energy conservation.  

Problem can be defined as follows. Suppose we have a function 𝒇(𝒙𝟏, 𝒙𝟐, 𝒙𝟑) whose 

extremum is to be found under the conditions 

 𝒈𝒊 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 = 𝑪𝒊, 𝒊 = 𝟏, 𝟐 (84) 

 

Without the constraining condition, problem would  have been very simply solved by 

requiring variation in 𝒇(𝒙, 𝒚, 𝒛) zero for small variations of the variables 𝒙, 𝒚, 𝒛  on which 

the function depends i.e. 

 
𝜹𝒇 =  

𝝏𝒇

𝝏𝒙𝟏
𝜹𝒙𝟏 +

𝝏𝒇

𝝏𝒙𝟐
𝜹𝒙𝟐 +

𝝏𝒇

𝝏𝒙𝟑
𝜹𝒙𝟑 = 𝟎 

(85) 

Since there are no constraints this amounts to requiring separately 

𝝏𝒇

𝝏𝒙𝟏
= 𝟎 

𝝏𝒇

𝝏𝒙𝟐
= 𝟎 

𝝏 𝒇

𝝏𝒙𝟑
= 𝟎 
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However, if the constraining conditioning must be satisfied, 𝜹𝒙𝟏, 𝜹𝒙𝟐 and 𝜹𝒙𝟑 can not be 

chosen arbitrarily and must satisfy simultaneously the conditions 

𝜹𝒈𝟏 =  
𝝏𝒈𝟏

𝝏𝒙𝟏
𝜹𝒙𝟏 +

𝝏𝒈𝟏

𝝏𝒙𝟐
𝜹𝒙𝟐 +

𝝏𝒈𝟏

𝝏𝒙𝟑
𝜹𝒙𝟑 = 𝟎 

𝜹𝒈𝟐 =  
𝝏𝒈𝟐

𝝏𝒙𝟏
𝜹𝒙𝟏 +

𝝏𝒈𝟐

𝝏𝒙𝟐
𝜹𝒙𝟐 +

𝝏𝒈𝟐

𝝏𝒙𝟑
𝜹𝒙𝟑 = 𝟎 

The above two equations can be simultaneously for 𝜹𝒙𝟏 and 𝜹𝒙𝟐 in terms of 𝜹𝒙𝟑, and 

substituted in equation (84) such that  𝜹𝒙𝟑can be chosen arbitrarily and its coefficients 

must vanish identically giving the extremum condition. 

An alternative way involves Lagrange’s undetermined multipliers 𝝀𝟏 and 𝝀𝟐 and 

subtracting these from (87) in such a way as to require  

 
𝝏𝒇

𝝏𝒙𝟏
− 𝝀𝟏

𝝏𝒈𝟏

𝝏𝒙𝟏
− 𝝀𝟐

𝝏𝒈𝟐

𝝏𝒙𝟏
 = 𝟎 

 
𝝏𝒇

𝝏𝒙𝟐
− 𝝀𝟏

𝝏𝒈𝟏

𝝏𝒙𝟐
− 𝝀𝟐

𝝏𝒈𝟐

𝝏𝒙𝟐
 = 𝟎 

 
𝝏𝒇

𝝏𝒙𝟑
− 𝝀𝟏

𝝏𝒈𝟏

𝝏𝒙𝟑
− 𝝀𝟐

𝝏𝒈𝟐

𝝏𝒙𝟑
 = 𝟎 

The above coupled equations  can be solved for 𝒙𝟏,  𝒙𝟐 and 𝒙𝟑 in terms of 𝝀𝟏 and 𝝀𝟐, 

which when substituted in equations (84) can be solved for 𝝀𝟏 and 𝝀𝟐 to provide extrema 

corresponding to the given function. 

This procedure can be extended for a function of many variables, under more than one 

constraint. 

Example: 

Let us try to find an extremum of the function 𝒇 𝒙, 𝒚, 𝒛 = 𝒂𝒙 + 𝒃𝒚 + 𝒄𝒛 under the 

condition that 𝒈 𝒙, 𝒚, 𝒛 = 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟏 

We calculate the three equations 

 
𝝏𝒇

𝝏 𝒙
− 𝝀𝟏

𝝏𝒈𝟏

𝝏 𝒙
 = 𝒂 − 𝟐𝝀𝒙 = 𝟎 

 
𝝏𝒇

𝝏𝒚
− 𝝀𝟏

𝝏𝒈𝟏

𝝏𝒚
 = 𝒃 − 𝟐𝝀𝒙 = 𝟎 
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𝝏𝒇

𝝏𝒛
− 𝝀𝟏

𝝏𝒈𝟏

𝝏𝒛
 = 𝒄 − 𝟐𝝀𝒙 = 𝟎 

From here we obtain the values of 𝒙, 𝒚 and 𝒛 in terms of the undetermined multiplier 𝝀. 

The undetermined multiplier can be obtained by substituting it in the condition 

𝒈 𝒙, 𝒚, 𝒛 = 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟏, which gives  

𝒂𝟐

𝟒𝝀𝟐
+

𝒂𝟐

𝟒𝝀𝟐
+

𝒂𝟐

𝟒𝝀𝟐
= 𝟏 

And hence 𝝀 = ±
 𝒂𝟐+𝒃𝟐+𝒄𝟐

𝟐
giving  extremum of 𝒇at 𝒙 = ±

𝒂

 𝒂𝟐+𝒃𝟐+𝒄𝟐
, 𝒚 =

±
𝒃

 𝒂𝟐+𝒃𝟐+𝒄𝟐
, and 𝒛 = ±

𝒄

 𝒂𝟐+𝒃𝟐+𝒄𝟐
 . with an extremal value of ±  𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 

A2 Some Important Integrals: 

In this module we have used integrals which are of the type 

 
𝑰𝝂 =  𝒙𝝂𝒆−𝜶𝒙𝟐

 𝒅𝒙
∞

𝟎

=
𝟏

𝟐

𝟏

𝜶
𝝂+𝟏

𝟐

𝚪  
𝝂 + 𝟏

𝟐
  𝒇𝒐𝒓 𝝂 > −1  

(86) 

This integral has an interesting property 

 𝝏𝑰𝝂
𝝏𝜶

= −𝑰𝝂+𝟐 
(87) 

Such that following integrals can be easily evaluated,using the fact that 𝚪 𝝁 + 𝟏 =
𝝁 𝚪(𝝁), where 𝝁 can be a rational number (fraction) and has a form  𝚪 𝝁 + 𝟏 =
𝝁  𝛍 − 𝟏  𝛍 − 𝟐 … . .  𝟏 + 𝐩 𝒑 𝚪 𝒑 ,𝒘𝒉𝒆𝒓𝒆 𝟎 < 𝑝 ≤ 1. For 𝝁 = 𝒏, 𝚪 𝒏 + 𝟏 = 𝒏!. 

Also 𝚪  
𝟏

𝟐
 . Thus following useful integrals can be obtained. 

𝑰𝟎 =  𝒆−𝜶𝒙𝟐
 𝒅𝒙

∞

𝟎

  =
𝟏

𝟐
 
𝝅

𝜶
 

𝟏

𝟐
 

𝑰𝟏 =  𝒙𝒆−𝜶𝒙𝟐
 𝒅𝒙

∞

𝟎

 =
𝟏

𝟐𝜶
 

𝑰𝟐 =  𝒙𝟐𝒆−𝜶𝒙𝟐
 𝒅𝒙

∞

𝟎

 =
𝟏

𝟒
 
𝝅

𝜶𝟑
 

𝟏

𝟐
 

𝑰𝟑 =  𝒙𝟑𝒆−𝜶𝒙𝟐
 𝒅𝒙

∞

𝟎

 =
𝟏

𝟐𝜶𝟐
 

𝑰𝟒 =  𝒙𝟒𝒆−𝜶𝒙𝟐
 𝒅𝒙

∞

𝟎

 =
𝟑

𝟖
 
𝝅

𝜶𝟓
 

𝟏

𝟐
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A3 Excel Spreadsheet for plotting canonical distribution function and Maxwell 

Boltzmann distribution function 

canonical%20probability%20distribution%20function%20and%20MB%20distribution%20function.xlsx
canonical%20probability%20distribution%20function%20and%20MB%20distribution%20function.xlsx
canonical%20probability%20distribution%20function%20and%20MB%20distribution%20function.xlsx

